位置:成果数据库 > 期刊 > 期刊详情页
Mechanical properties of lattice grid composites
  • ISSN号:0567-7718
  • 期刊名称:Acta Mechanica Sinica
  • 时间:0
  • 页码:409-418
  • 语言:英文
  • 分类:TB33[一般工业技术—材料科学与工程]
  • 作者机构:[1]Department of Engineering Mechanics,Tsinghua University, 100084 Beijing, China, [2]College of Science, PLA University of Science and Technology,210007 Nanjing, China
  • 相关基金:The project supported by the China Postdoctoral Science Foundation (20060400465) and the National Natural Science Foundation of China (10702033).
  • 相关项目:纺织点阵复合材料设计与力学性能研究
中文摘要:

仅仅考虑神气的拉长的变丑的一个相等的连续统方法被用来学习在里面飞机僵硬和平面格子格子的力量合成材料。格子的起始的收益方程被推出。起始的收益表面在不同 3D 和 2D 压力空格独立被描绘。失败信封在 2D 空格是在 3D 空格和一个多角形的一个多面体。失败信封的每架飞机或线相应于收益或典型酒吧排弄弯。为有超过三酒吧排的格子,在起始的产量以后的另外的酒吧排的随后的产量让格子完成更大的限制力量。当格子是相对的时,格子的弄弯的力量的重要性被加强稀少。方法的集成模型被用来学习紧张变硬格子的非线性的机械性质。集成方程能精确地在小变丑以内为格子的完全的压力紧张曲线建模,这被显示出。

英文摘要:

An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《力学学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:卢天健
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:actams@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0567-7718
  • 国内统一刊号:ISSN:11-2063/O3
  • 邮发代号:2-703
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:352