位置:成果数据库 > 期刊 > 期刊详情页
基于径向基函数神经网络的高光谱遥感图像分类
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP39[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国矿业大学地理信息与遥感科学系,江苏徐州221008
  • 相关基金:国家自然科学基金项目(40401038),国家高技术发展计划项目(2007AA12Z162)和教育部高校博士点专项科研基金项目(20070290516)资助
中文摘要:

从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。首先进行了最小噪声分离变换,提取了1~20个分量的数据,使用提取后的数据(20维)、提取后数据的纹理变换(20维)和主成分分析的前(20维),组成了60维向量数据进行分类处理,这种分类器结构简单、容易训练、收敛速度快,其分类精度达到69.27%,高于BP神经网络分类算法(51.20%)以及常用的最小距离分类(MDC)算法(40.88%)。通过对结果和过程进行分析,实验证明径向基函数神经网络在高光谱遥感分类中具有较好的适用性。

英文摘要:

Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS Ⅱ made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40.88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642