由于塔架在风力作用下的弯曲振动,机舱会产生俯仰运动,进而对行星齿轮产生基础激励。从能量角度出发,考虑基础俯仰运动、轮齿脱啮和齿背啮合,通过第二类拉格朗日方程建立了基础俯仰运动下行星齿轮传动非线性弯-扭-轴耦合模型。与现有基础固定情况下的耦合模型相比,基础俯仰运动将引起附加阻尼、附加刚度和附加外激励,同时引起直齿轮平面运动与轴向运动的耦合。采用数值积分获得系统动态响应,评估轴向运动对系统动力学特性影响的大小,分析基础俯仰运动和齿圈支承刚度对行星齿轮动力学响应和均载特性的影响。结果表明,基础俯仰运动显著增大中心轮(行星架、齿圈和太阳轮)的横向振动;行星轮所受附加作用力不相同,运动对称性被破坏,系统出现不均载现象。当系统存在轮齿脱啮和齿背啮合时,增大齿圈支承刚度能显著改善均载特性,没有轮齿脱啮和齿背啮合时,均载系数随着齿圈支承刚度的增大而小幅增大。
Because of the tower vibration induced by wind load, the cabin will experience pitching motion, which causes pitching base motion to the planetary gear. Considering pitching base motion, tooth separation and back-side contact, a rotational-translational-axial model of the planetary gear under pitching base motion is presented through the Lagrange equation of the second kind. Compared with the traditional model, pitching base motion induces additional damping, stiffness and external excitation, and coupling between axial motion and in-plane motions of the gear. Through numerical integration, the dynamic response is obtained. The influence of axial motions on the planetary gear is evaluated, and the influence of base motion and ring support stiffness on the dynamic response and load sharing is investigated. Pitching base motion significantly increases the transverse vibrations of the central components (carrier, ring, sun). Additional forces on planets are not identical, and thus the move- ment symmetry is destroyed. With the existence of tooth separation and back-side contact, increasing the ring support stiffness can significantly improve the load sharing condition. Without tooth separation and back-side contact, load sharing factor increa- ses slightly with the ring support stiffness.