位置:成果数据库 > 期刊 > 期刊详情页
具有自适应邻域探测机制的改进型PSO算法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华侨大学计算机科学与技术学院,福建泉州362021
  • 相关基金:国家自然科学基金项目(60805021)资助; 福建省自然科学基金项目(A0710013)资助
中文摘要:

针对基本PSO算法在全局优化中易陷入局部极值和收敛精度低的不足,分析了基本PSO算法早熟收敛的原因,提出具有自适应邻域探测机制的改进型粒子群优化(ANE-PSO)算法.该算法在进化过程中以概率总体递减的方式,选择部分粒子对最佳位置按半径总体递减的规则进行邻域探测,并引入速度变异算子,提高种群的多样性,增强了算法的全局搜索能力.并证明它依概率1收敛到全局最优解.通过与其它三个改进算法比较,结果表明ANE-PSO具有较好的全局搜索能力,收敛速度较快,稳定性较好,且没有增加时间复杂度,较有效的避免了早熟收敛问题.

英文摘要:

In global optimization,particle swarm optimization(PSO) is often trapped in local optima and low accuracy in convergence.Following an analysis of the cause of the premature convergence,a novel particle swarm optimization based on self-adaptive neighborhood explored is proposed,which is called ANE-PSO.During evolution,every particle can explore the best position's neighborhood in a descend probability,the neighborhood radius can be self-adaptive to reduce,and also the velocity of mutation operator is added in.This method can break away from local optimization and enhances the global search ability.The ANE-PSO is guaranteed to converge the global optimization solution with probability one.Compared with other three improved algorithms on accuracy and convergence speed,and also on time complexity,it shows that the ANE-PSO converges faster,results in better optima,is more robust and the time complexity is not added,and prevents more effectively the premature convergence problem.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212