位置:成果数据库 > 期刊 > 期刊详情页
基于重采样的胸部CT图像肺实质自动分割
  • ISSN号:1002-3208
  • 期刊名称:北京生物医学工程
  • 时间:2012.4.4
  • 页码:349-355
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学中荷生物医学与信息工程学院,沈阳110004, [2]中国医科大学盛京医院放射科,沈阳110004
  • 相关基金:国家自然科学基金(61071213,51006021)资助
  • 相关项目:肿瘤磁性靶向治疗过程中纳米颗粒的在体输运规律研究
中文摘要:

目的胸部CT图像的肺实质自动分割是肺部疾病计算机辅助检测的重要基础。为提高分割速度,本文提出并实现了一种基于重采样的分割算法。方法首先对数据重采样,提取部分(1/8)体数据。再基于重采样体数据,通过阈值分割、胸腔提取、气管剔除、血管填充、左右肺分离和肺壁结节填充等步骤,得到初步分割结果。然后将该结果还原到完整数据体上,形态学平滑后即完成最终分割。最后将算法应用于20例患者数据(2556个断层),并与放射科医生手动分割结果进行比较。结果本文算法对20例患者数据均能取得优异结果,与放射科医生手动分割的平均面积重叠率达99.02%,且适用于左右肺相连、肺壁存在结节、视野不完整等异常情况。通过数据重采样极大缩短分割时间,一般可缩短50%,一帧图像平均耗时小于0.25s。结论本文算法能够实现胸部cT图像肺实质的自动分割,结果准确可靠,鲁棒性好,速度快,基本满足实际临床需求。

英文摘要:

Objective Automatic lung parenchyma segmentation is one of the most important steps in the computer aided diagnosis (CAD) of the lung. To increase segmentation speed, an algorithm based on resampling of the image data is proposed and implemented. Methods The algorithm firstly resamples and extracts a small part (1/8) of the original CT images data. Several steps are implemented to get preliminary segmentation with the resampled data, which include simple threshold segmentation, body region elimination, trachea extraction, removal of interior cavities, left-right lung separation and lung nodule filling. The final results are obtained after projecting the preliminary segmentation to the original dataset and morphology smoothing. The proposed algorithm is applied to 20 patients' data (2556 slices) , and the results are compared to the manual segmentations. Results The algorithm can get accurate results with an average area overlapped ratio 99.02% to the manual segmentation by the radiologist, and works well for the abnormal cases (right-left connected, with nodules and uncompleted views ) . Through resampling, the time consumption of the algorithm is shortened significantly, typically by 50%, and the processing for one slice image is less than 0.25 s. Conclusions The proposed automatic lung parenchyma segmentation algorithm with excellent robustness and high speed, can get accurate result and satisfy the requirements of current clinical applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京生物医学工程》
  • 中国科技核心期刊
  • 主管单位:北京市卫生和计划生育委员会
  • 主办单位:北京市生物医学工程学会 北京市心肺血管疾病研究所
  • 主编:孙衍庆
  • 地址:北京安定门外安贞医院北京生物医学工程编辑部
  • 邮编:100029
  • 邮箱:LLBL910219@126.com
  • 电话:010-64456508
  • 国际标准刊号:ISSN:1002-3208
  • 国内统一刊号:ISSN:11-2261/R
  • 邮发代号:82-885
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:5449