锌指核酸酶、类转录激活因子式核酸酶和CRISPR/Cas技术是近几年发展起来的3种主要基因组编辑技术,其原理都是通过在生物基因组特定位点制造DNA双链断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异。基因组编辑技术已在研究基因功能和基因修复中成功应用,基于基因组编辑技术的诸多优点,如CRISPR/Cas技术能对基因组中多个特定位点进行编辑。其有望成为昆虫遗传转化的主要策略。本文就锌指核酸酶、类转录激活因子式核酸酶和CRISPR/Cas技术的基本原理及其在昆虫中的应用做一简介,为今后利用基因组编辑技术进行昆虫遗传转化提供些许参考。
The technologies of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats, CRISPR; CRISPR associated protein, Cas) are three ma- jor genome editing techniques that have being developed in recent years. The basic principle is to make DNA double-strand break (DSB) damaged in the genome specific sites and to activate the body's own DNA damage repair mechanism, then causing all sorts of variation in the process. The genome editing techniques have important research prospect in the research of gene function and gene repair. They are also expected to become the main strategy of insect genetic transformation since they have many merits. For exam- pie, CRISPR/Cas can be used to edit multiple specific loci in the genome. In this paper, the basic principles of the ZFNs, activa- tion of transcription factor type nucleic acid enzymes and CRISPR/Cas technologies and their applications in insects are briefly intro- duced. The information provides some references for the use of genome editing techniques in insect genetic transformation.