针对谐振极型零电流软开关逆变器的拓扑电路的辅助开关较多所导致的逆变器体积大、成本高、效率低以及控制策略复杂等问题,提出一种结构简单的谐振极型零电流软开关逆变器拓扑电路,逆变器的每一相仅使用了1个辅助开关、1个谐振电感、1个谐振电容和2个辅助二极管来完成电路谐振。因此,该拓扑电路可以减小逆变器体积,降低成本,简化控制策略和提高效率。分析了逆变器在不同模式下的工作原理,给出了软开关实现条件和实际参数设计过程,建立了辅助电路功率损耗的数学模型。制作了一台2 k W的单相实验样机和一台6 k W的三相实验样机,实验结果表明该逆变器的主开关和辅助开关器件都可以实现零电流软开关。该软开关逆变器可以降低损耗和提高效率。
Aiming at the problems that the big volume, the high cost, the low efficiency and the complex control strategy in the type of resonsnt pole zero current soft switching inverter caused by so many auxilia- ry switches were used in topology circuit. A novel resonant pole zero current switching inverter topology circuit was proposed,which has a simple structure. Each phase of the three phase-inverter only use one auxiliary switch, one resonant inductor and one resonant capacitor and two auxiliary diodes to complete the resonance of the circuit. So, this topology circuit reduces the volume of the inverter, reduces the cost, simplifies the control strategy and improves the efficiency. The operation principle of the soft-switching inverter which worked in different operation modes were presented. The conditions for realization of soft- switching and the actual design process of the parameters were presented. The mathematical model for auxiliary resonant circuit loss was established. A 2 kW one phase laboratory prototype and a 6kW three- phase laboratory prototype were built. The experiment results verify that the whole main switches and aux- iliary switches realize zero current switching. This soft-switching inverter presented effectively reduces switching loss and improves efficiency.