极大多线性奇异积分算子算子定义为 Ta^*f(x)=supε〉0|∫|x-y|〉εΩ(x-y)/|x-y|^n+1(A(x)-A(y)-△A(y)(x-y))f(y)dy|, 其中Ω是零阶齐次函数,△A εBMO(R^n).在关于Ω一定正则性假设条件下,得到了TA^*从L(R^n)到弱L^1(R^n)的有界性结果,同时也证明了TA^*是从H^1(R^n)空间到弱L^1(R^n)空间的有界算子。
The maximal multilinear singular integral operators is definded by Ta^*f(x)=supε〉0|∫|x-y|〉εΩ(x-y)/|x-y|^n+1(A(x)-A(y)-△A(y)(x-y))f(y)dy|, where Ω is homogeneous of degree zero,△AεBMO(R^n).A regularity condition on Ω which implies tha TA^* is bounded from L log L(R^n) to weak L^1(R^n).And also,it is proved that TA^* is bounded from H^1(R^n)to weak L^1(R^n).