经由 Riccati 方程使用扩大印射的方法,的许多准确可变分离解决方案(2+1 ) 维的可变系数 Broer Kaup 方程被获得。在种子解决方案介绍多重珍视的功能和 Jacobi 椭圆形的功能,周期的半的特殊类型合拢了独居的波浪被导出。在长波浪限制这些周期的半合拢的独居的波浪刺激可以堕落进单个半合拢的局部性的 soliton 结构。周期的半的相互作用合拢了独居的波浪和他们的堕落的单个半合拢的 soliton 结构图形地被调查并且发现了完全有弹性。
Applying the extended mapping method via Riccati equation, many exact variable separation solutions for the (2&1 )-dimensional variable coefficient Broer-Kaup equation are obtained. Introducing multiple valued function and Jacobi elliptic function in the seed solution, special types of periodic semifolded solitary waves are derived. In the long wave limit these periodic semifolded solitary wave excitations may degenerate into single semifolded localized soliton structures. The interactions of the periodic semifolded solitary waves and their degenerated single semifolded soliton structures are investigated graphically and found to be completely elastic.