The interactions of a colored dynamical network play a great role in its dynamical behaviour and are denoted by outer and inner coupling matrices. In this paper, the outer and inner coupling matrices are assumed to be unknown and need to be identified. A corresponding network estimator is designed for identifying the unknown interactions by adopting proper adaptive laws. Based on the Lyapunov function method and Barbalat’s lemma, the obtained result is analytically proved. A colored network coupled with chaotic Lorenz, Chen, and L systems is considered as a numerical example to illustrate the effectiveness of the proposed method.
The interactions of a colored dynamical network play a great role in its dynamical behaviour and are denoted by outer and inner coupling matrices. In this paper, the outer and inner coupting matrices are assumed to be unknown and need to be identified. A corresponding network estimator is designed for identifying the unknown interactions by adopting proper adaptive laws. Based on the Lyapunov function method and Barbalat's lemma, the obtained result is analytically proved. A colored network coupled with chaotic Lorenz, Chen, and Lii systems is considered as a numerical example to illustrate the effectiveness of the proposed method.