结合传感器网络的节点特性和位置信息,提出了一种基于连通支配集的传感器网络定向传播模型,以及一种基于“域”的分布式数据汇聚模型DDAM(distributed data aggregation model).DDAM把传感器网络按“域”划分采构建连通核,传感节点只需在连通核中寻径,因而可明显减少寻径时间复杂度并且具有更好的分布性;然后在该定向传播与数据汇聚模型基础上,考虑传感器网络的数据特性及小波变换在流数据压缩方面的茛好性能,提出了一种基于区间小波变换的混合熵数据压缩方法.理论分析和实验仿真结果表明:对比传统的DC算法-DD路由算法相结合的算法,新算法能对传感器网络中的流数据进行有效压缩,可更大程度地降低传感器节点数据传榆的能耗,从而进一步延长整个网络的生命周期.
Considering the characteristics and location information of nodes in sensor networks, a modified directed transfer model of sensor networks and a new distributed data aggregation model based on "area" are proposed. On the basis of these new models, a novel mixed entropy data compression algorithm based on interval wavelet transforming is proposed for sensor network, according to the characteristics of data in sensor networks and the good performances of wavelet transforming in compression of the data stream. Theoretical analyses and simulation results show that, the above new methods can compress the data stream and reduce the energy costs of nodes in data transferring efficiently for sensor networks. So, it can prolong the lifetime of the whole networks to a greater degree when the above new methods are deployed with those traditional DC (data centric) routing algorithms such as DD (directed diffusion) protocol for sensor networks.