研究毕达哥拉斯模糊决策环境下的集成算子及其决策应用.给出拟加权几何集成算子和拟有序加权几何算子的概念,并分析它们的性质.将有序加权平均算子、有序加权几何算子、拟有序加权平均算子和拟有序加权几何算子推广到毕达哥拉斯模糊决策环境,定义毕达哥拉斯模糊有序加权平均算子、广义毕达哥拉斯模糊有序加权平均算子、毕达哥拉斯模糊有序加权几何算子、广义毕达哥拉斯模糊有序加权几何算子、拟毕达哥拉斯模糊有序加权平均算子和拟毕达哥拉斯模糊有序加权几何算子.提出基于广义毕达哥拉斯模糊集成算子的决策方法,并通过实例验证其可行性.
Aggregation operators under the Pythagorean fuzzy environment and their applications to decision making are discussed. The Quasi-weighted geometric(QWG) operator and the Quasi-ordered weighted geometric(QOWG) operator are defined, and their natures are studied. Then, a class of aggregation operators called Pythagorean fuzzy aggregation operators are proposed, including the Pythagorean fuzzy order weighted average(PFOWA) operator, the generalized Pythagorean fuzzy order weighted average(GPFOWA) operator, the Pythagorean fuzzy order weighted geometric(PFOWG) operator, the generalized Pythagorean fuzzy order weighted geometric(GPFOWG) operator, the Quasi Pythagorean fuzzy order weighted average(QPFOWA) operator and the Quasi Pythagorean fuzzy order weighted geometric(QPFOWG) operator. A method based on generalized Pythagorena fuzzy aggregation operators for decision making is presented, and an example is given to illustrate the feasibility of the proposed method.