位置:成果数据库 > 期刊 > 期刊详情页
双种群进化模型的电力负荷预测
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京师范大学泰州学院数学科学与应用学院,江苏泰州225300, [2]黔南民族师范学院数学系,贵州都匀558000
  • 相关基金:贵州省教育厅科研项目(黔教科2010093);广西研究生教育创新计划资助项目(No.200710608070lMl8);黔南民族师范学院青年教师创新项目(No.QNS200905);泰州市科技发展计划项目;泰州市社会发展计划项目(No.2011044).
中文摘要:

传统灰色预测模型GM(1,1)在预测增长较快的电力负荷时效果会变差。针对这一缺陷,提出了一种改进的双种群ESOGM模型,将进化策略对参数优化处理的优点与GM(1,1)模型相结合,利用进化策略算法优化模型中的参数。电力负荷预测实例表明该模型具有较高的预测精度和较广的应用范围。

英文摘要:

As power load forecasting grows quickly, the traditional gray prediction model GM (1, 1 ) becomes worse. According to the shortcoming, in this article a new improved bi-group Evolutionary Strategy Optimization Grey Model is proposed, combining the advantage about evolutionary strategy in ,.solving parameter with GM (1, 1 ) model, and then the parameters about GM (1, I ) are solved by using evolutionary strategy algorithm. The power load forecast example indicates that the model gives better precision and has wider application field.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887