研究了在二氧化硅/硅衬底上制备的悬浮石墨烯以及二硫化钼的反射光谱以及悬浮二硫化钼的光致发光光谱.研究发现:悬浮多层石墨烯的反射光谱表现出明显的振荡现象,并且该振荡具有一定的周期性;振荡周期的大小不依赖于悬浮多层石墨烯的层数,而是随着衬底上沉孔深度(空气层厚度)的增加而减小.利用多重光学干涉模型可以解释这种振荡现象以及振荡周期随沉孔深度改变的变化趋势.该模型计算结果表明,只有当沉孔深度达到微米量级时这种振荡现象才会显著出现;并且可由振荡周期定量地确定出沉孔深度.对于悬浮的二硫化钼样品,其反射光谱和光致发光光谱也出现了类似的振荡现象.这表明这种振荡现象是在各种衬底上悬浮二维材料反射光谱和光致发光光谱的一种普遍性结果,也预示悬浮二维材料器件的电致发光光谱也会出现类似的振荡现象,对悬浮二维晶体材料的物理性质和器件性能研究具有一定的参考价值.
Suspended two-dimensional(2D) materials have been widely used to improve the device performances in comparison with the case of supported 2D materials. To realize such a purpose, 2D materials are mainly suspended on the holes of substrates, which are usually used to support 2D materials. The holes beneath the 2D materials are usually full of air. The air layer with the thickness identical to the hole depth will affect the spectral features of the reflection and photoluminescence spectra of suspended 2D materials because there exist multiple optical interferences in the air/2Dflakes/air/Si multilayer structures. However, it is not clear that how the spectral features depend on the hole depth. In this paper, the reflection spectra of suspended multilayer graphene and Mo S2 flakes as well as the photoluminescence spectra of suspended multilayer Mo S2 flakes are systematically studied. The reflection spectra of suspended multilayer graphene flakes exhibit obvious oscillations, showing the optical characteristic with periodic oscillations in wavenumber.The oscillation period decreases with increasing the hole depth(or the thickness of the air layer), but is independent of the thickness of suspended graphene flakes. This can be well explained by the model based on multiple optical interferences in the air/graphenes/air/Si multilayer structures, which have been successfully utilized to understand the Raman intensity of ultrathin 2D flakes and substrate beneath the ultrathin 2D flakes dependent on the thickness of2 D flakes, the thickness of Si O2 layer, the laser wavelength and the numerical aperture of objective. The theoretical simulation shows that the oscillation is obviously observable only when the hole depth reaches up to the value on the order of microns. For suspended multilayer Mo S2 flakes, the reflection and photoluminescence spectra show similar periodic oscillations in wavenumber and the oscillation period is also dependent on the hole depth. The hole depth is measured by the surface profiler. It i