位置:成果数据库 > 期刊 > 期刊详情页
A first-principles study of the catalytic mechanism of the dehydriding reaction of LiNH2 through adding Ti catalysts
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:O643.36[理学—物理化学;理学—化学] TQ314.242[化学工程—高聚物工业]
  • 作者机构:[1]College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China, [2]College of Constructional Engineering, Shenyang University of Technology, Shenyang 110023, China, [3]State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 相关基金:Project supported by the National High Technology Research 8z Development of China (Grant No. 2009AA05Z105), the National Natural Science Foundation of China (Grant No. 50671069), the Science Research Program of the Education Bureau of Liaoning Province of China (Grant Nos. 2008S345, 2008511 and 2007T165), and the Financial Support from Shenyang Normal University.
中文摘要:

Experiments on a ball milled mixture with a 1:1 molar ratio of LiNH2 and LiH with a small amount(1 mol %) of Ti nano,TiCl3 and TiO nano 2 have revealed a superior catalytic effect on Li-N-H hydrogen storage materials.In the x-ray diffraction profiles,no trace of Ti nano,TiCl3 and TiO nano 2 was found in these doped composites,by which we deduced that Ti atoms enter LiNH2 by partial element substitution.A first-principles plane-wave pseudopotential method based on density functional theory has been used to investigate the catalytic effects of Ti catalysts on the dehydrogenating properties of LiNH2 system.The results show that Ti substitution can reduce the dehydrogenation reaction activation energy of LiNH2 and improve the dehydrogenating properties of LiNH2.Based on the analysis of the density of states and overlap populations for LiNH2 before and after Ti substitution,it was found that the stability of the system of LiNH2 is reduced,which originates from the increase of the valence electrons at the Fermi level(EF) and the decrease of the highest occupied molecular orbital(HOMO)-lowest unoccupied molecular orbital(LUMO) gap(△EH-L) near E F.The catalytic effect of Ti on the dehydrogenating kinetics of LiNH2 may be attributed to the reduction of average populations between N-H per unit bond length(nm-1),which leads to the reduction of the chemical bond strength of N-H.

英文摘要:

Experiments on a ball milled mixture with a 1:1 molar ratio of LiNH2 and LiH with a small amount (1 mol %) of Ti^nano, TICl3 and TiO2^nano have revealed a superior catalytic effect on Li N H hydrogen storage materials. In the x-ray diffraction profiles, no trace of Ti^nano, TICl3 and TiO2^nano was found in these doped composites, by which we deduced that Ti atoms enter LiNH2 by partial element substitution. A first-principles plane-wave pseudopotential method based on density functional theory has been used to investigate the catalytic effects of Ti catalysts on the dehydrogenating properties of LiNH2 system. The results show that Ti substitution can reduce the dehydrogenation reaction activation energy of LiNH2 and improve the dehydrogenating properties of LiNH2. Based on the analysis of the density of states and overlap populations for LiNH2 before and after Ti substitution, it was found that the stability of the system of LiNH2 is reduced, which originates from the increase of the valence electrons at the Fermi level (EF) and the decrease of the highest occupied molecular orbital (HOMO) lowest unoccupied molecular orbital (LUMO) gap (△EH-L) near EF. The catalytic effect of Ti on the dehydrogenating kinetics of LiNH2 may be attributed to the reduction of average populations between N-H per unit bond length (nm-1), which leads to the reduction of the chemical bond strength of NH.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406