本文采用一种新的错误驱动的组合分类器方法来实现中文Base NP识别。本文首先对中文和英文Base NP识别技术现状进行了简要分析和概述,明确了中文Base NP识别的任务。然后,基于前人的工作提出了错误驱动的组合分类器方法,其基本思路是:通过对比两种不同类型的分类器基于转化的方法和条件随机场方法的分类结果,再利用支持向量机学习其中的错误规律,对两分类器产生的不同结果进行纠错,从而达到提高系统整体性能的效果。我们在宾州中文树库转化得到的Base NP语料集上进行了Base NP识别交叉验证实验,与单独使用基于转化的方法、条件随机场方法以及支持向量机方法相比较,错误驱动的组合分类器方法的实验结果都有所提高,最佳结果F值达到了89.72%,相对于文中Base NP识别的其他方法,最大提高幅度为2.35%。
This paper proposes a hybrid error-driven combination approach to chunking Chinese Base noun phrase (Chinese Base NP), which combines TBL (Transformation-based Learning) model and CRF (Conditional Random Field) model. First, we give an overview of the Chinese and English Base NP chunking, followed by a description of the Chinese Base NP chunking task. In order to analyze the results respectively from the two (TBL-based and CRF- based) classifiers and improve the performance of the Base NP chunkers, an error-driven SVM (Support Vector Machine) based classifier is trained from the classification errors of the two classifiers. According to our experiments, the hybrid method achieves the best results with F-measure of 89.72% and improves by 2.35% in the best case compared with other methods.