低密度奇偶校验码因其具有逼近香农限的优异性能,现已在多种标准和系统中得到广泛的应用。但为了使其能够满足不同应用场景下通信系统对纠错性能、计算复杂性、译码时延、硬件资源损耗以及功耗等方面的要求,需要对用于LDPC码译码的置信传播算法进行进一步的研究与改进。该文从译码算法的改进动机、方法论、计算复杂度以及性能表现等角度入手,对近些年出现的一些Beyond-BP译码算法进行了综述。并在最后对用于迭代接收系统的译码算法改进工作进行了讨论,为未来算法的改进工作提供一点思路。
Low Density Parity Check (LDPC) codes are employed in several standards and systems, due to their Shannon limit approaching ability. However, in order to satisfy the communication systems' requirements at the aspects of error correction ability, computing complexity, decoding latency, hardware source consumption and power consumption under different application circumstances, the Belief Propagation (BP) algorithm used for decoding LDPC codes needs to be further investigated and improved. In this survey, authors summarize several different Beyond-BP algorithms from the aspects of motivation, methodology, complexity and performance. Moreover, this survey also discusses the optimization of decoding algorithms for iterative receive system, which can provide a reference for further investigation on this topic.