This paper studies the entanglement dynamics of the system S composed of two non-interactional qubits A and B. The third qubit C is its environment, E, which only interacts with the S qubit B by the Dzyaloshinskii-Moriya spin-orbit coupling. Considering the following states as the whole (S+E): the initially S-E correlated state and the separable one, the entanglement of S has no sudden death for the former case. This result sheds some light on the control of quantum entanglement, which will be helpful for quantum information processing.
This paper studies the entanglement dynamics of the system S composed of two non-interactional qubits A and B. The third qubit C is its environment, E, which only interacts with the S qubit B by the Dzyaloshinskii-Moriya spin-orbit coupling. Considering the following states as the whole (S+E): the initially S-E correlated state and the separable one, the entanglement of S has no sudden death for the former case. This result sheds some light on the control of quantum entanglement, which will be helpful for quantum information processing.