位置:成果数据库 > 期刊 > 期刊详情页
基于模糊RBF神经网络的乙烯装置生产能力预测
  • ISSN号:0438-1157
  • 期刊名称:《化工学报》
  • 时间:0
  • 分类:TP29[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京化工大学信息科学与技术学院,北京100029, [2]智能过程系统工程教育部工程研究中心,北京100029
  • 相关基金:国家自然科学基金项目(61374166,71572008);高等学校博士学科点专项科研基金(20120010110010);中央高校基本科研业务费(YS1404,ZY1502).
中文摘要:

针对传统的径向基函数(RBF)神经网络隐藏层节点的不确定和初始中心敏感性、收敛速度过慢等问题,提出一种基于模糊C均值的RBF神经网络(FCM-RBF)模型,通过模糊C均值聚类(FCM)得到各聚类中心,基于误差反传的梯度下降法训练隐藏层到输出层之间的权值,克服传统RBF模型对数据中心的敏感性,优化确定RBF神经网络隐藏层的节点数,提高网络训练速度和精度。最后将其用于乙烯装置生产能力预测中,分析预测不同技术、不同规模乙烯装置生产情况,指导乙烯生产,提高生产效率,结果验证了所提出算法的有效性和实用性。

英文摘要:

For the conventional radial basis function (RBF) neural network, there are many problems like uncertain nodes in the hidden layer, sensitivity to initial centers and slow convergence speed, etc. This paper proposes an RBF neural network model based on the fuzzy C-means method (FCM-RBF), with each cluster center obtained by fuzzy C-means clustering. And weights between the hidden layer and the output layer are trained by the gradient descent method based on error back-propagation (BP). The proposed method overcomes the sensitivity of the data center for traditional RBF model, determines optimally the number of nodes in the hidden layer of RBF neural network, and improves the network training speed and precision. Finally, the proposed method is applied in the production capacity forecast of the ethylene plants. The production statuses of ethylene plants of different technologies or different scales are analyzed and predicted to guide the ethylene production and improve energy efficiency. The empirical results demonstrate the effectiveness and practicability of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185