研究稀土元素Nd(0-0.4%,质量分数)对近共晶Al-12Si合金显微组织与力学性能的影响。结果表明:在0.3%Nd改性的Al-12Si合金中形成一种亚微米或纳米尺寸的Al2Nd相。在Al-12Si合金中添加稀土元素Nd能显著细化合金中的α(Al)相,粗生硅相转变为细小颗粒状,共晶硅由粗大针状变成细小纤维状。在改性效果最佳的Al-12-0.3Nd合金的Si相表面观察到少量的生长孪晶。力学性能测试结果表明:添加Nd元素后,Al-12Si合金的力学性能得到改善,当合金中Nd元素含量达到0.3%时,合金的力学性能达到最优,抗拉强度(UTS)为252 MPa,伸长率(EL)为13%。合金力学性能的改善主要归因于合金中Si相形貌的改善和细小Al2Nd相颗粒的形成。
The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.