提出了一种改进的复合电沉积制备钢基超疏水表面的方法.通过在Q235基材上构筑微纳米的NinSiO2表面,实现了Q235钢基超疏水表面的制备.首先改进复合电沉积工艺;然后通过正交实验和极差分析,分析镀液中Ni2+含量对表面超疏水性能的影响,确定最佳镀液配方;最后探究电流密度、阳极速度和时间对表面超疏水性能的影响,并基于此对工艺参数进行优化.最终确定当Ni2+浓度为0.5mol/L、电流密度为37.5A/dm^2、阳极速度为8m/min、沉积时间为3min时,可制备出表面接触角为153.5°,滚动角为6.5°的超疏水表面.
A movel method of preparing the super-hydrophobic surface on steel was proposed.This method successfully prepared the super-hydrophobic surface by constructing the micro-nano Ni-nSiO_2 structures on Q235.At first,technique of composite electro-deposition was improved.Then,the effect of Ni -(2+)concentration on super-hydrophobic property was studied and the most suitable solution formula was obtained by orthogonal test and range analysis.Finally,the impacts of current density,anode speed and time were analyzed respectively.When the current density is set at 37.5 A/dm-2,speed of anode is set at 8m/min,deposition time is 3min,a super-hydrophobic surface with contact angle 153.5°and roll angle 6.5°can be prepared.