设H是有限群G的正规子群使得G/H为p-幂零群,P是H的一个Sylowp-子群.若下列条件之一成立,则G是p-幂零群:(1)NG(P)为p-幂零群且P的极大子群在G中弱c*-正规或半覆盖-远离;(2)p是G的最小素因子,G与A4无关且P的二次极大子群在G中弱c*-正规或半覆盖-远离;(3)NG(P)为p-幂零群且P的二次极大子群在G中弱c*-正规或半覆盖-远离.
Let H be a normal subgroup of a finite group G such that G/H is p-nilpotent and let P be a Sylow-subgroup of H.If one of the following holds,then G is p-nilpotent:(1) NG(P) is p-nilpotent and every maximal subgroup of P is either weakly c*-normal or in semi-cover-avoiding G;(2) p is the smallest prime divisor of G,G is A4-free and every 2-maximal subgroup of P is either weakly c*-normal or semi-cover-avoiding in G;(3) NG(P) is p-nilpotent and every 2-maximal subgroup of P is either weakly c*-normal or semi-cover-avoiding in G.