位置:成果数据库 > 期刊 > 期刊详情页
一种高效的用于话题检测的关键词元聚类方法
  • ISSN号:0253-987X
  • 期刊名称:西安交通大学学报
  • 时间:2012.10.1
  • 页码:24-28
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学电子与信息工程学院,西安710049, [2]陕西省计算机网络重点实验室,西安710049, [3]西安财经学院信息学院,西安710100
  • 相关基金:国家自然科学基金资助项目(61172090); 国家科技重大专项课题(2012ZX03002001-004)
  • 相关项目:基于社会关系认知的物联网移动感知服务模型与方法
作者: 杨攀|桂小林|
中文摘要:

针对基于关键词元的话题内事件检测算法运行效率不高、不适合进行大规模文本话题检测的问题,提出了一种高效的关键词元聚类算法.该算法在进行词元簇选择时,为簇间相似度分配权值,并借鉴正态分布函数评估词元簇的个数,提高词元簇的选择精度,从而减少所需的词元聚类次数.实验结果表明,将改进的方法应用到舆情监控的话题检测中,能在不影响检测精度的前提下有效地提高算法的运行效率.

英文摘要:

An improved term-committee-based event identification algorithm is presented to meet the requirements of efficiency and accuracy in public opinion monitor system,where the original event identification algorithm can not be applied due to its lower efficiency.While the similarity between the clusters is calculated,the weight is taken into consideration simultaneously.Referencing the examples from normal curve,an evaluation algorithm is proposed to help choosing cluster with a proper term number,thus the improved algorithm only needs clustering once.The experiments indicate the operating efficiency for the required accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人共和国教育部
  • 主办单位:西安交通大学
  • 主编:陶文铨
  • 地址:西安市咸宁西路28号
  • 邮编:710049
  • 邮箱:xuebao@mail.xjtu.edu.cn
  • 电话:029-82668337 82667978
  • 国际标准刊号:ISSN:0253-987X
  • 国内统一刊号:ISSN:61-1069/T
  • 邮发代号:52-53
  • 获奖情况:
  • 美国《工程索引》(EI光盘版)定期收录的中文期刊,《中文核心期刊目录总览》综合类核心期刊,科技部《科技论文统计与分析》统计源,《中国科学引文数据库》刊源,获全国高校优秀科技期刊一等奖,“百种中国杰出学术期刊”称号,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27275