在对流层内,闪电产生的氮氧化物(LNOχ)是氮氧化物(NOχ)的主要来源之一,这一区域内,由于NOχ生命史较长,且控制着对流层臭氧(03)和氢氧根(OH)的含量,影响着全球大气环境和气候变化χ针对LNOχ量的估算这一大气化学及雷电物理领域内的研究热点,介绍了NOχ的主要来源、LNOχ的产生机制及其对气候变化的重要性,详细综述了国内外现有的估算LNOχ量的主要方法和估算结果χ综述结果表明,目前估算LNOχ量采用的研究方法主要有野外观测、实验室模拟、理论模式计算和卫星数据反演,主要通过观测或假设得到单位能量产生的NOχ量,或单位通道长度产生的NOχ量,同时通过观测或假设得到一次放电通道产生的总能量或一次放电的总通道长度,进而外推或数值模拟某一局地区域或全球的LNOχχ由于不同地区、不同雷暴、甚至不同的闪电个体之间的显著差异导致不同的研究者估算LNOχ时采用的参数值不同,进而使得LNOχ估算量的结果差异较大,不确定性增大χ近30年LNOχ较为精确的产量计算结果平均值为5.2(2.8~9.1)Tg/aχ最后提出,今后需继续对比分析利用先进的观测手段得到NOχ和闪电的野外观测和卫星观测数据,进一步认识LNOχ的产生机制,得到针对不同地区、不同强度的雷暴和不同的闪电个体估算NOχ的参数取值,进一步减小估算LNOχ时所用到的各个参数的不确定性χ在此基础上,利用大气化学数值模式模拟局地或全球LNOχ的产生和演变及其对其他空气成分的影响和作用,进一步认识LNOχ在全球气候变化中的作用。
Nitrogen oxide (NOx) is one of the most important lighting-produced molecules, primarily because it facilitates chemical reactions in the troposphere that determine the concentrations of ozone (O3) and of the hydroxyl radical (OH). NOx source, LNOx mechanism and their significance on climate change are introduced for understanding the estimate of LNOx, which is a research hotspot in atmospheric chemistry and lighting physics. Then, the main methods and results of estimate on LNOx are summarized. The conclusions show that, in situ measurement, laboratory simulation, theoretical extrapolation and retrieval of satellite data are the major research methods in this field. Through these methods, NOx production per unit lightning energy or unit lightning channel length are obtained, then combified with the total energy or channel length of lightning, the LNOx production in local or global is estimated by extrapolation or numerical modeling. Due to the different region, thunderstorm and even lightning are presented remarkable difference, and the parameters chosen by different researchers are various, leading to the diversity of results. In the past three decades, the mean value of relatively accurate production calculations has been 5.2(2.8~9.1 ) Tg/a. Therefore, advanced NOx observations of in-situ and space measurements should be analyzed to realize the LNOx mechanism. Appropriate NOx parameters should be chosen in varied intensity thunderstorm and individual lightning to reduce the parameter uncertainties. On that basis, atmospheric chemical model is integrated to simulate LNOx generation, development and the influence of other air composition regionally and globally. Thus, the role of LNOx in global climate change would be better recognized.