为考察超宽带(UWB)实现植入式生物医学电子设备无线通信的可行性及信道传播特性,基于男性活体CT及MRI切片图像,构建了一个频率范围在1~10.8GHz的高分辨率三维人体电磁模型,考虑了85种不同人体组织或器官的电磁特性参数;将模型嵌入基于有限积分法(FTT)的三维电磁仿真软件进行电磁计算,考察电磁波在人体内的路径损耗及比吸收率特性。实验结果表明:该模型能较好地描绘真实人体的电磁特性,信号在人体内的衰减随频率的升高及植入深度的加深而加重;在植入深度达160rain时,3.5GHz信号的路径损耗为75dB;参考功率为27dBm时,人体对3.5GHz信号的比吸收率在安全值范围内;证实了采用UWB频段内的3.5GHz实现植入式生物医学电子无线通信的可行性和安全性。
To investigate the feasibility and channel propagation characterization of Ultra-wideband(UWB) wire- less communication for biomedical implantable electronic devices, a high-resolution 3D electromagnetic model of human body based on computed tomography(CT) and magnetic resonance imaging(MRI) segmented images of living human males is presented, the frequency range is 1 - 10.8 GHz, and the electromagnetic characters for 85 different kind of human tissues or organs are considered. The model is embedded in 3D electromagnetic(EM) simulator based on finite integration technique(FIT) for electromagnetic computation to investigate the path loss and specific absorption rate(SAR) in body. Experiment result shows that the model can well characterize the electromagnetic characters of real human body, the signal loss is aggravating with the higher frequency and deep- er implant depth; the path loss for 3.5 GHz is 75 dB under an implant depth of 160 mm and, with a reference power of 27 dBm, the SAR in body for 3.5 GHz is under the safety region. These results demonstrate the feasi- bility and security of applying 3.5 GHz on UWB for wireless communication in biomedical implantable devices.