以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH4+-N)及磷酸盐(PO43--P)浓度均分别为350 mg·L^-1(以COD计)、40 mg·L^-1及12 mg·L^-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L^-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h^-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L^-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.
A sequencing batch reactor (SBR) (R1) with static/aerobic/anoxic regime was used for biological nutrient removal (BNR). To investigate the feasibility of static phase as a substitute for conventional anaerobic phase, the performance of R1 was compared to anaerobic/aerobic/anoxic SBR (R2). The concentrations of influent acetate, ammonia nitrogen (NH4+-N) and phosphate (PO43--P) in both reactors were 350 mg·L^-1, 40 mg·L^-1and 12 mg·L^-1, respectively, and the hydraulic retention time (HRT) was 12 h. The experimental results demonstrated that the phosphorus (P) removal efficiency in R1 (92.4%) was comparative to R2 (92.1%). However, total nitrogen (TN) removal efficiency of R1 (83.5%) was higher than that of R2 (77.0%). Static phase in R1 still worked as anaerobic phase without stirring, which contributed to rapid P uptake in aerobic phase. The effluent P of 0.91 mg·L^-1 was achieved through denitrifying P removal in anoxic phase. Simultaneous nitrification and denitrification (SND) in aerobic phase contributed 18.0% of TN elimination in R1, much higher than that of R2 (9.8%). In the post-anoxic phase, microorganisms utilized glycogen as carbon source to drive denitrification, exhibiting denitrification rates (DNRs) of 0.98, 0.84 mg·g-1·h^-1 and 6.62, 9.21 mg·L^-1 of effluent TN in R1 and R2, respectively. Better nitrogen removal efficiency was obtained with anaerobic phase replaced by static phase, and the configuration was further simplified.