位置:成果数据库 > 期刊 > 期刊详情页
自适应的分数阶达尔文粒子群优化算法
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国家数字交换系统工程技术研究中心,河南郑州450002
  • 相关基金:基金项目:国家重点基础研究发展计划(“973”计划)基金资助项目(2012CB315900);国家高技术研究发展计划(“863”计划)基金资助项目(2011AA01A103)
中文摘要:

针对分数阶达尔文粒子群算法收敛性能依赖于分数阶次α,易陷入局部最优的特点,提出了一种自适应的分数阶达尔文粒子群优化(AFO-DPSO)算法,利用粒子的位置和速度信息来动态调整分数阶次α,并引入自适应的加速系数控制策略和变异处理机制,以获取更优的收敛性能。对几种典型函数的测试结果表明,相比于现有的粒子群算法,所提的 AFO-DPSO 算法的搜索精度、收敛速度和稳定性都有了显著提高,全局寻优能力得到了进一步提高。

英文摘要:

The convergence performance of the fractional-order Darwinian particle swarm optimization (FO-DPSO) al-gorithm depends on the fractional-orderα, and it can easily get trapped in the local optima. To overcome such shortcom-ing, an adaptive fractional-order Darwinian particle swarm optimization (AFO-DPSO) algorithm was proposed. In AFO-DPSO, both particle’s position and velocity information were utilized adequately, together an adaptive acceleration coefficient control strategy and mutation processing mechanism were introduced for better convergence performance. Testing results on several well-known functions demonstrate that AFO-DPSO substantially enhances the performance in terms of convergence speed, solution accuracy and algorithm stability. Compared with PSO, HPSO, DPSO, APSO, FO-PSO, FO-DPSO and NCPSO, the global optimality of AFO-DPSO are greatly improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019