位置:成果数据库 > 期刊 > 期刊详情页
面向调控网络参数学习的无迹粒子滤波算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:Q811.4[生物学—生物工程] TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科技大学机电工程与自动化学院,长沙410073
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60835005).
中文摘要:

目前基于微分方程模型学习网络参数的工作普遍基于卡尔曼滤波器,对所分析系统有线性假设前提,而基因调控网络具有强非线性,因此需要更适用于非线性模型的方法。提出了一种基于无迹粒子滤波器学习基因调控网络参数的方法,由于粒子滤波方法不受模型线性假设的约束,因此能够对非线性系统进行更好的拟合。通过对Repressillar模型中隐变量与未知参数的估计并与无迹卡尔曼滤波器所获结果的比较,提出的算法有效减少了估计误差。并对粒子数目对结果的影响进行了分析。相较于卡尔曼滤波器,无迹粒子滤波方法对于调控网络参数学习精度更高。粒子数目太少或太多都会减弱估计精度,因此选择适当的粒子数目非常重要。

英文摘要:

The recent researches on estimation of parameters on Gene Regulatory Networks(GRN) by differential equations are generally based on Kalman Filtering Model(KFM).It makes assumptions that the system analyzed is linear.However, GRN is obviously non-linear system,so great deviation error will happen.Here a method is presented to estimate the parameters and hidden variables of GRN based on Unscented Particle Filtering(UPF).It makes better fitness than KFM due to free of the premise that the model is linear.By comparison of the estimation of the hidden variables and parameters of Repressilator between UPF and Unscented Kalman Filter(UKF),advantage of this method on reduction of estimation error is validated. The effect of the amount of particles on result is simultaneously analyzed.UPF is more accurate than UKF in estimating the parameters of GRN.Deficiency or overabundance particles both will weaken accuracy of estimation,so selection on the quantity of particles is significant.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887