位置:成果数据库 > 期刊 > 期刊详情页
基于序列划分的压缩序列模式挖掘算法
  • ISSN号:1000-2243
  • 期刊名称:《福州大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]福州大学数学与计算机科学学院,福建福州350108
  • 相关基金:福州大学科技发展基金资助项目(2006-XQ-22); 福建省教育厅科研资助项目(JB07023)
中文摘要:

研究了静态数据库当中挖掘压缩序列模式的问题,提出了一个压缩序列模式挖掘算法.该算法通过对闭序列模式全集进行划分处理,降低了序列的比对空间,并结合δ-dominant序列检测机制,有效的挖掘出了压缩序列模式集.实验表明,该算法具有较好的运行效率.

英文摘要:

This paper researches the problem of mining compressed sequential patterns in a static database. By ranging the closed sequential patterns and using the δ - dominant detecting technique, this paper propose a algorithm which can decrease number of closed sequential patterns, and mining compressed sequential patterns efficiently. The experimental results show that the algorithm has higher accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《福州大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:福州大学
  • 主办单位:福州大学
  • 主编:杨黄浩
  • 地址:福建省福州市大学新区学园路2号
  • 邮编:350116
  • 邮箱:xb@fzu.edu.cn
  • 电话:0591-22865030 22865031
  • 国际标准刊号:ISSN:1000-2243
  • 国内统一刊号:ISSN:35-1117/N
  • 邮发代号:34-27
  • 获奖情况:
  • 全国高校优秀自然科学学报,华东地区优秀期刊,福建省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8994