研究了动态各向同性光子晶体中二能级原子自发辐射的性质,主要讨论了光子晶体能带带边频率随时间作阶跃调制和三角函数周期调制两种情况下,原子上能级占据数随时间的演化特性。当光子晶体能带带边频率随时间作阶跃调制时,原子上能级占据数随时间的演化不仅和上能级与能带带边的相对位置δ有关,更依赖于阶跃调制发生的时刻。调制发生时刻不同,调制后原子上能级占据数随时间的演化也不同。当光子晶体能带带边频率随时间作三角函数周期调制时,二能级原子上能级占据数随时间作总体衰减的准周期振荡。通过选择调制频率和调制初相位可调控准周期振荡的频率、峰值与谷值的大小以及占据数的总体衰减速度等。
The spontaneous emission of a two-level atom, located in an isotropic photonic crystal with dynamically modulated photonic band edge, has been studied. When the photonic band edge is modulated with step functions or triangle functions, the evolution of atomic population on the upper level has been discussed. When the photonic band edge is modulated with step functions, the dynamics of atomic population depends not only on the detuning value of the atomic transition frequency from the band edge, but also on the time point of stepping. With the different time point of stepping, the dynamics of atomic population after stepping is different. When the photonic band edge is modulated with triangle functions, the atomic population oscillates quasi-periodically while decaying in general. The oscillation frequency, peak and valley values, and the decaying rate of oscillation can be modulated by choosing the frequency and initial phase of triangle functions.