位置:成果数据库 > 期刊 > 期刊详情页
3种不同方法对肉牛胴体性状预测能力的比较研究
  • ISSN号:0366-6964
  • 期刊名称:《畜牧兽医学报》
  • 时间:0
  • 分类:S823.8[农业科学—畜牧学;农业科学—畜牧兽医]
  • 作者机构:[1]中国农业科学院北京畜牧兽医研究所肉牛研究中心农业部畜禽遗传资源与利用重点开放实验室,北京100193, [2]西北农林科技大学动物科技学院,杨凌712100, [3]东北农业大学动物科技学院,哈尔滨150030
  • 相关基金:农业部专项(Nycytx38);国家自然基金(30871774);转基因生物新品种培育重大专项(2009ZX08007005B);"十一五"转基因重大专项(2008ZX080072);"十二五"科技支撑计划课题(2011BAD28804);中国农业科学院基本科研业务费专项资金课题(2010jc-2)
中文摘要:

本研究为了寻求一种对肉牛胴体性状预测准确性较高的方法,运用DPS数据处理系统和SAS软件比较偏最小二乘回归、GM(1,N)灰色系统和BP神经网络3种常用的预测模型对肉牛胴体性状的预测能力。选择肉牛7个宰前生长性状(体高、体长、胸围、腹围、管围、宰前活体质量、平均日增体质量),对2个重要的胴体性状(胴体质量和净肉质量)进行预测。结果表明:偏最小二乘回归方法在肉牛胴体性状预测方面准确性最高;GM(1,N)灰色系统和BP神经网络预测准确度偏低。本研究还将3种预测结果相结合,取其均值,大大提高了预测的准确性。这一研究将为肉牛生产实践提供一定的科学参考。

英文摘要:

To search for a method to predict accurately carcass traits in bovine, in this study, DPS and SAS software were used to compare the methods of partial least squares regression, GM(1, N) gray system and BP neural network, in order to observe their accuracy in predicting carcass traits in bovine. Seven preslaughter growth traits including body height, body length, chest circ- umference, abdominal circumference, cannon bone circumference, live weight and average daily gain were used to predict the carcass weight and meat weight. The results showed that the partial least squares regression gave the highest accuracy, while the average relative errors of GM(1 ,N) gray system and BP neural network were lower. In this study, the three predicted results were combined and their mean value were calculated as the predictive values, which would greatlyimprove the accuracy of prediction. The results would provide some scientific references to beef production.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《畜牧兽医学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国畜牧兽医学会
  • 主编:文杰
  • 地址:北京海淀区圆明园西路2号中国农科院畜牧所
  • 邮编:100193
  • 邮箱:xmsyxb@263.net
  • 电话:010-62815987 62816996
  • 国际标准刊号:ISSN:0366-6964
  • 国内统一刊号:ISSN:11-1985/S
  • 邮发代号:82-453
  • 获奖情况:
  • 1992年北京优秀期刊奖,1998年、2000年在全国畜牧兽医优秀期刊评比中获一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国剑桥科学文摘,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:21857