Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly improved. Desulfurization kinetics of CuO/γ-Al2O3 was studied in the temperature range of 250 °C-400 °C and SO2 concentration of 0.1%-0.9%. The experimental data were tested and compared with kinetics models of volume reaction model(VRM), grain size model(GSM), random pore model(RPM) and pore-blocking model(PBM). Correlation analysis shows that VRM and RPM models do not fit experimental data well. GSM contradicts with the changes in the physical and chemical properties of Cu O/γ-Al2O3 as the desulfurization proceeds. It is found that PBM is consistent with the change of pore structure of CuO/γ-Al2O3 sorbent during desulfurization process and predicts the conversion-time curves of the sorbent well. Meanwhile, kinetics parameters are obtained and discussed.
Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly improved. Desulfurization kinetics of CuO/γ-Al2O3 was studied in the temperature range of 250 °C-400 °C and SO2 concentration of 0.1%-0.9%. The experimental data were tested and compared with kinetics models of volume reaction model(VRM), grain size model(GSM), random pore model(RPM) and pore-blocking model(PBM). Correlation analysis shows that VRM and RPM models do not fit experimental data well. GSM contradicts with the changes in the physical and chemical properties of Cu O/γ-Al2O3 as the desulfurization proceeds. It is found that PBM is consistent with the change of pore structure of CuO/γ-Al2O3 sorbent during desulfurization process and predicts the conversion-time curves of the sorbent well. Meanwhile, kinetics parameters are obtained and discussed.