位置:成果数据库 > 期刊 > 期刊详情页
基于情感词向量的微博情感分类
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中国科学院计算所网络数据科学与技术重点实验室,北京100190
  • 相关基金:国家重大基础研究发展计划(“九七三”计划)(2012CB316303,2014CB340401)资助项目;国家高技术研究发展计划(“八六三”计划)(2012AA011003)资助项目;国家自然科学基金重点(61232010)资助项目;国家科技支撑计划子课题(2012BAH46804)资助项目.
中文摘要:

文本表示作为文本分类的一个基本问题,一直广受关注。目前文本表示主要有词袋模型、隐式语义表达和基于知识库的显式语义表达3种方式。本文首先分析对比了这3种文本表示方式在文本分类中的效果。实验发现,基于知识库的显式语义表达并没有如预期一样提高文本分类的效果。经分析,其原因在于显式语义表达在扩展文档表达时易引入噪声。针对该问题,本文提出了一种有监督的显式语义表达方法。该方法利用数据集的标注信息识别文档中与分类最相关的核心概念,并扩展核心概念以形成文档显式语义表达。3个标准分类数据集上的结果证实了本文所提文本表示方法的有效性。

英文摘要:

As a fundamental problem of text categorization, text representation is widely concerned. Cur-rently, there are three main ways of text representation: bag-of-words model, latent semantic represen- tation and knowledge-based explicit semantic representation. The paper analyzes and compared the effects of these methods applied to text categorization. Experiments show that the knowledge-based ex- plicit semantic representation cannot improve the text categorization performance as expected. To tackle the problem that the knowledge-based explicit semantic representation easily introduces noise in extending text, a supervised explicit semantic representation method is proposed. The dataset label information is used to identify the most relevant concepts in document and the document is represented in explicit se- mantic based on expanding those key concepts. The results of three datasets confirm the effectiveness of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136