位置:成果数据库 > 期刊 > 期刊详情页
基于k均值和基于归一化类内方差的语音识别自适应聚类特征提取算法
  • ISSN号:1000-0054
  • 期刊名称:《清华大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:清华大学电子工程系,北京100084
  • 相关基金:国家自然科学基金面上项目(61374120)
作者: 肖熙, 周路
中文摘要:

语音识别模型中帧间独立假设在给模型计算带来简洁的同时,不可避免地降低了模型精度,增加了识别错误。该文旨在寻找一种既能满足帧间独立假设又能保持语音信息的特征。分别提出了基于k均值和基于归一化类内方差的语音识别自适应聚类特征提取算法,可以自适应地实现聚类特征流的提取。将该自适应特征分别应用在Gauss混合模型-隐Markov模型、基于段长分布的隐Markov模型和上下文相关的深度神经网络模型这3种语音识别模型中,与基线系统进行了实验对比。结果表明:采用基于归一化类内方差的自适应特征可以使得3种语言模型的识别错误率分别相对下降10.53%、5.17%和2.65%,展示了语音自适应聚类特征的良好性能。

英文摘要:

The inter-frame independence assumption for speech recognition simplifies the computations. However, it also reduces the model accuracy and can easily give rise to recognition errors. Therefore, the objective of this paper is to search for a feature which can weaken the inter-frame dependence of the speech features and keep as much information of the original speech as possible. Two speech recognition feature extraction algorithms are given based on the k-means algorithm and the normalized intra-class variance. These algorithms provide adaptive clustering feature extraction. Speech recognition tests with these algorithms on a Gaussian mixture model-hidden Markov model (GMM-HMM), a duration distributionbased HMM (DDBHMM), and a context dependent deep neural network HMM (CD-DNN-HMM) show that the adaptive feature based on the normalized intra-class variance reduces the relative recognition error rates by 10.53%, 5.17%, and 2.65% relative to the original features. Thus, this adaptive clustering feature extraction algorithm provides improved speech recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:梁恩忠
  • 地址:北京市海淀区清华大学学研大厦B座908
  • 邮编:100084
  • 邮箱:xuebaost@tsinghua.edn.cn
  • 电话:010-62788108 62792976
  • 国际标准刊号:ISSN:1000-0054
  • 国内统一刊号:ISSN:11-2223/N
  • 邮发代号:2-90
  • 获奖情况:
  • 国家期刊奖,国家“双高”期刊,1992年以来,历次国家级和省部级一等奖,第一、二届全国优秀科技期刊一等奖,教育部优秀期...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43470