在介绍黑暗参数进传统的物理模型以后,新现象的一些类型可以被发现。一个重要困难的问题是怎么直接观察这种物理现象。一个其他的处理是介绍相等的多重搭挡地。如果使用这理想到 integrable 系统,一个人可以无穷地获得由原来的平常的地和搭挡地组成的许多新联合 integrable 系统。这个想法经由 celebrate KdV 方程被说明。从过程,一些副产品能被获得:发现联合非线性的物理问题的一些类型的准确解决方案的一个新方法,说,不安 KdV 系统,被提供;象蹒跚的模式那样的一些新局部性的模式能被发现,象鬼相互作用一样的一些新相互作用现象被发现。
After introducing dark parameters into the traditional physical models, some types of new phenomena may be found. An important difficult problem is how to directly observe this kind of physical phenomena. An alternative treatment is to introduce equivalent multiple partner fields. If use this ideal to integrable systems, one may obtain infinitely many new coupled integrable systems constituted by the original usuM field and partner fields. The idea is illustrated via the celebrate KdV equation. From the procedure, some byproducts can be obtained: A new method to find exact solutions of some types of coupled nonlinear physical problems, say, the perturbation KdV systems, is provided; Some new localized modes such as the staggered modes can be found and some new interaction phenomena like the ghost interaction are discovered.