位置:成果数据库 > 期刊 > 期刊详情页
基于各向异性自适应高斯加权方向窗的非局部三维Otsu图像门限分割
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西安电子科技大学智能感知与图像理解教育部重点实验室,西安710071
  • 相关基金:国家自然科学基金(61173093,61072106,61075041)和教育部长江学者与创新团队支持计划(IRT1170)资助课题
中文摘要:

针对传统3维Otsu(3D—Otsu)门限分割方法中的滤噪性能和小目标保持性能的不足,该文提出一种基于各向异性自适应高斯加权方向窗的3D—Otsu门限分割的新方法。新方法改进了3D—Otsu的邻域窗口设置方法,采用中心点的局部特征来自适应地确定邻域各向异性高斯加权方向窗口的尺寸、尺度和滤波方向。然后,提出非局部多方向相似度测量来更有效地捕捉图像中的模式冗余。最终,结合像素点灰度值、加权均值、加权中值构建3维直方图,并基于最大类间方差计算门限矢量进行分割。实验结果表明:与目前广泛使用的2维Otsu,2维最大熵以及传统3维Otsu方法相比,新方法有着更好的门限分割效果,并具有更好的滤噪性能和小目标保持性能。

英文摘要:

Because of the shortage of noise removal and small target preservation for the conventional threedimensional Otsu (3D-Otsu) method, a new method based on adaptive Gaussian weighted directional window is proposed. The new method improves the window setting method of the 3D-Otsu. The window size, scale and filtering direction are adaptively determined by the local characters. Then, based on the proposed non-local multiple directions similarity measurement, the pattern redundancy in the image can be captured effectively. Finally, the 3D histogram is constructed based on the gray value, weighted mean value and weighted median value, and the threshold vector is computed by the maximum between-class variance method to segment the image. Compared with the commonly-used 2D Otsu method, 2D max-entropy method and 3D-Otsu method, the proposed method has better segmentation performance, with better performance for noise removal and small target preservation.

同期刊论文项目
期刊论文 12 会议论文 6 专利 25
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739