位置:成果数据库 > 期刊 > 期刊详情页
基于基集与概念格的关联规则挖掘算法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子科技大学计算机科学与工程学院,成都610054
  • 相关基金:国家自然科学基金资助项目“基于神经网络的大规模数值模拟数据分析技术与研究”(10476006)
中文摘要:

传统关联规则挖掘算法的挖掘效率较低,且挖掘结果中存在大量冗余。针对该问题,提出一种基于概念格与基集的关联规则挖掘算法。利用规定种子项分布范围的基集代替原始数据库以缩小挖掘源规模,从而建立概念格快速求解出关联规则。实验结果表明,该算法在时间效率方面优于Base和Apriori算法。

英文摘要:

Traditional association rule mining algorithm has low efficiency and it has a mount of redundant in mining results.Aiming at this problem,this paper presents an association rule mining algorithm based on base set and concept lattice.It replaces the original database with the base set which has seed item distribution range,and builds concept lattice to find association rules.Experimental results show that this algorithm has much superior to Base and Apriori algorithm on the performance of time efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139