位置:成果数据库 > 期刊 > 期刊详情页
基于最大相关熵的自编码网络人脸识别
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:桂林电子科技大学信息与通信学院,广西桂林541004
  • 相关基金:国家自然科学基金(61362021,61661017); 广西自然科学基金(2014GXNSFDA118035); 桂林电子科技大学研究生教育创新计划(YJCX201534)
中文摘要:

针对传统的自编码网络及其变体均采用均方误差作为重构函数对噪声不足,提出一种基于最大相关熵的堆栈稀疏自编码网络。该方法采用最大相关熵作为网络的重构函数,并且采用多层非线性映射层构建了一个多层网络,同时引入稀疏约束项。YaleB和AR人脸库实验结果表明,在训练样本有无噪声的情况下,该方法相比传统的自编码网络均具有更强的鲁棒性,且识别性能有所提高,学习到的特征更具表达能力。

英文摘要:

To overcome the problem of noise in the auto encoder network and its variants where mean square error is regard as reconstruction function, a stacked sparse auto encoder network is proposed, the maximum relative entropy is used as the re- construction function of network and a multi layer network with sparse constraint is constructed in the method. Experimen- tal results demonstrate that the proposed method is more and AR databases whether the training samples are noisy ance and the learned features are more powerful. robustness than the traditional auto encoder network on the YaleB or not noisy. In addition, it achieves better recognition perform ance and the learned features are more powerful.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679