Let γ*(D) denote the twin domination number of digraph D and let Cm Cn denote the Cartesian product of Cm and Cn, the directed cycles of length m, n ≥ 2. In this paper, we determine the exact values: γ*(C2?Cn) = n; γ*(C3 ?Cn) = n if n ≡ 0(mod 3),otherwise, γ*(C3?Cn) = n + 1; γ*(C4?Cn) = n + n/2 if n ≡ 0, 3, 5(mod 8), otherwise,γ*(C4?Cn) = n + n/2 + 1; γ*(C5?Cn) = 2n; γ*(C6?Cn) = 2n if n ≡ 0(mod 3), otherwise,γ*(C6?Cn) = 2n + 2.更多还原
Let γ*(D) denote the twin domination number of digraph D and let Cm Cn denote the Cartesian product of C_m and C_n, the directed cycles of length m, n ≥ 2. In this paper, we determine the exact values: γ*(C_2□C_n) = n; γ*(C_3 □C_n) = n if n ≡ 0(mod 3),otherwise, γ*(C_3□C_n) = n + 1; γ*(C_4□C_n) = n + n/2 if n ≡ 0, 3, 5(mod 8), otherwise,γ*(C_4□C_n) = n + n/2 + 1; γ*(C_5□C_n) = 2n; γ*(C_6□C_n) = 2n if n ≡ 0(mod 3), otherwise,γ*(C_6□C_n) = 2n + 2.