一些昆虫和动物例如臭虫,蚂蚱和树青蛙,由注射弄湿的液体认识到他们的有效粘附机制到玻璃表面,墙和天花板薄电影进垫底层接触区域。他们控制粘附的能力(从表面属于或分开) 在许多,情况被连接到接触几何学和他们的附件垫的表面模式。这篇论文在简历粘合剂垫的微模式上集中于毛状的粘附(湿粘附) 的依赖。目的是揭示可能的机制让简历粘合剂垫通过调整它的微规模的表面模式和地形学控制毛状的力量。一个毛状的粘附力量模型被建立考虑微酒窝的几何学以及限制液体的弄湿的行为的联合角色薄电影。定期微酒窝的表面上的明显的接触角度的计算结果与相比并且在对试验性的大小的好同意。毛状的粘附力量的模拟表明它在由,调整定义为 a/(a+b ) 的尺寸更少表面模式参数 k 的大大小是可控制的一是微酒窝的直径,并且(a+b ) 是一个模式房间的方面长度。当调整参数 k 时超过 0.75,毛状的粘附力量能是可切换的从对吸引人排斥。当垫底层清理减少到 nano/micrometer 规模时,界面的毛状的力量上的微模式的这效果被证明主导。这些结果显示可控制、可切换的毛状的粘合剂机制可能被一只生活昆虫或动物利用通过调整它的简历粘合剂垫的微模式的地形学认识到它的稳定的粘附和快释放运动。
Some insects and animals, such as bugs, grasshoppers and tree frogs, realize their efficient adhesion mechanism to glass surface, wall and ceiling by injecting a wetting liquid thin film into the pad-substrate contact area. Their ability to control adhesion (attaching or detaching from a surface) is in many cases connected to the contact geometry and surface patterns of their attachment pads. This paper focuses on the dependence of the capillary adhesion (wet adhesion) on the micro patterns of the bio-adhesive pads. The objective is to reveal the possible mechanism for a bio-adhesive pad to control capillary force through adjusting its micro-scale surface pattern and topography. A capillary adhesion force model is built up taking account of the combined role of micro-dimple geometry as well as the wetting behavior of the confined liquid thin film. Calculated results of the apparent contact angle on the regularly micro-dimpled surfaces are compared with and in good agreement with the experimental measurements. Simulation of the capillary adhesion force reveals that it is controllable in a large mag- nitude by adjusting a dimensionless surface pattern parameter k defined as a/(a+b), where a is the dia- meter of micro dimple, and (a+b) is the side length of one pattern cell. When adjusting the parameter k more than 0.75, the capillary adhesion force could be switchable from attractive to repulsive. This effect of micro patterns on the interfacial capillary force is proved to be dominant when the pad-substrate clearance decreases to the nano/micrometer scale. These results indicate that a controllable and switchable capillary adhesive mechanism might be utilized by a living insect or animal to realize its stable adhesion and quick releasing movement through adjusting the micro-pattern topography of its bio-adhesive pad.