位置:成果数据库 > 期刊 > 期刊详情页
结构图的谱分解及聚类研究
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算机科学与技术学院,合肥230039, [2]皖西学院机械与电子工程系,六安237012
  • 相关基金:国家自然科学基金项目(No.60375010)、教育部“优秀青年教师资助计划”项目(教人司[2003]355)资助
中文摘要:

探索用图谱方法嵌入和聚类非加权图,以图的邻接矩阵主要特征向量来定义邻接矩阵的特征模.对每个特征模,我们计算谱特征向量,包括特征模周界、特征模体积、Cheeger常数、模间邻接矩阵和模间边界距离.用两种对比方法嵌入这些向量到一个模式空间:1)用谱模式特征的协方差矩阵的主成分分析(PCA)和独立分量分析(ICA);2)两类模式向量在L2范数下的多维尺度变换方法(MDS).另外,我们在三维多面体的二维图像中用角点特征来表示邻近图,以描述不同嵌入方法的聚类效果.

英文摘要:

This paper explore how to use spectral methods for embedding and clustering unweighted graphs. The leading eignvectors of the graph adjacency matrix are employed to define eignmodes of the adjacency matrix . For each eigenmode , vectors of spectral properties are computed as feature vectors. These properties include the eigenmode perimeter, eigenmode volume, Cheeger number, inter-mode adjacency matrices and intermode edge-distance. Then these vectors are embedded in a pattern-space using two contrasting approachs . The first of these involves performing principal or independent component analysis on the covariance matrix for the spectral pattern vectors. The second approach involves performing multidimensional scaling on the L2 norm for pairs of patten vectors. This paper also illustrate the utility of the embedding methods on neighbourhood graphs representing the arrangement of corner features in 2D images of 3D polyhedral objects. Experimental results show that clustering graphs using spectral properties of graphs is practical and effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169