位置:成果数据库 > 期刊 > 期刊详情页
利用销售数据的商品影响关系挖掘研究
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]青岛理工大学计算机工程学院,山东青岛266033, [2]浙江大学计算机科学与技术学院,杭州310027
  • 相关基金:国家自然科学基金(60402010),浙江省自然科学基金(Y105250)
中文摘要:

数据挖掘技术作为一种有效的决策工具正为企业做出科学决策提供依据。该文针对关联规则挖掘商品间相关性的不足,提出了一种新的计算方法利用销售商的商品销售数据挖掘商品之间的相关性及影响关系。该方法根据商品销售数据的变化得到所有商品销售数据的时间序列,然后计算测量序列的相似度,从而确定商品间影响关系。实验证明了该方法的有效性,同时得到了一些有价值的结果,可用于指导具体商业实践。

英文摘要:

Data mining can help business enterprise get valuable information from continual accumulated and updated data sources. This paper uses seller's commodity sale database to investigate the correlations among commodities. Especially, aiming to the shortage of association rule algorithm in mining the correlation among commodities, this paper proposes a new algorithm. Based on daily sale data record of commodities, we obtain their sale data time series according to the change of commodities' sales, then compare these time series, measure their distance, and finally get correlations of commodities. Some experiments on real data sets validate the effectiveness of our proposed method. And we obtain some valuable results, which can guide the business application.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314