利用 Wronskian 技巧构造了一类非线性孤子方程新的形式解。首先,给出非线性广义Boussinesq方程的双线性形式,利用Wronskian技巧,构造出该非线性方程所满足的一个线性偏微分条件方程组。然后,求解该微分条件方程组,得到了广义Boussinesq方程的Wronskian行列式解。在此基础上,根据系数矩阵的特征值类型,构造出该非线性广义Boussinesq方程的一类新的精确解即complexiton解。
The Wronskian technique is further studied for constructing new Wronskian determinant solu-tions of nonlinear soliton equations .First ,the bilinear form of a generalized Boussinesq equation is giv-en .The linear partial differential equations are obtained with Wronskian technique .Then the Wronskian determinant solutions of the generalized Boussinesq equation are gained by solving the linear partial dif-ferential conditions .Based on these ,complexiton solutions of the generalized Boussinesq equation are constructed .