位置:成果数据库 > 期刊 > 期刊详情页
面向卫星云图云分类的自适应模糊支持向量机
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P231[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:宁波大学信息科学与工程学院,浙江宁波315211
  • 相关基金:国家自然科学基金(61271399,61471212); 宁波市国际合作项目(2013D10011); 宁波市自然科学基金(2011A610192,2013A610055); 浙江省信息与通信工程重中之重学科项目(XKXL1425,XKXL1306)
中文摘要:

云类识别是实现卫星云图自动分析的基础,针对卫星云图易受噪声干扰且不同云系往往相互交叠的特点,构造一种面向云类识别的自适应模糊支持向量机。该方法不仅改进了隶属度函数的表现形式,而且通过定义控制临界隶属度和隶属度衰减趋势的参数,使隶属度能根据不同云系样本的具体分布特性自适应调整,解决了传统模糊支持向量机的隶属度函数难以反映样本分布的问题。在MTSAT卫星云图上的实验结果表明,通过提取云图可见光通道的反照率、红外通道的亮温及三种亮温差作为云图的光谱特征,并结合统计纹理特征,所构造的自适应模糊支持向量机分类器能有效区分晴空区、低云、中云、高云及直展云;云类识别准确率优于标准支持向量机和传统模糊支持向量机,且具有更强的稳定性和自适应性。

英文摘要:

The classification of clouds plays an important role in analyzing satellite imagery automati- cally. Specific to the characteristics that satellite imagery is susceptible to noises and different types of clouds tend to overlap, a classifier based on adaptive fuzzy support vector machine (AFSVM) for clas- sification of clouds is constructed. First, the classifier confirms a minimum hypersphere to distinguish effective samples and no-effective samples by Support Vector Data Description (SVDD) method. The samples inside of the hypersphere are taken as effective samples, while the samples outside of the hy- persphere are regard as no-effective samples. Then the formula of membership function is modified to make that the membership attenuation speed of the effective samples is slower than that of the no-ef- fective samples. Finally, the paper defines three parameters to control specially the critical member- ship degree and the attenuation trend of membership function. The proposed membership function o- vercomes the shortcoming of the traditional FSVM that its membership function could not describe the distribution of samples effectively, and makes itself adjust adaptively according to the specific dis- tribution characteristics of different cloud sample sets. Experiments were conducted on MTSAT satel- lite imagery, the results showed that by extracting the spectral feature of the albedo of VIS channel, the bright temperatures of four IR channels and the three bright temperature differences as the spec- tral features, and combined with the statistical texture features, the proposed classifier is able to dis- tinguish the clear weather, low clouds, middle clouds, high clouds and clouds with vertical develop- ment effectively with high accuracies, and the performances are superior to the standard SVM and tra- ditional FSVM in terms of stability and adaptability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217