位置:成果数据库 > 期刊 > 期刊详情页
混合混沌量子进化算法
  • 期刊名称:系统工程理论与实践,2011,已录用
  • 时间:0
  • 分类:O224[理学—运筹学与控制论;理学—数学]
  • 作者机构:[1]广东工业大学自动化学院,广州510006, [2]华南理工大学土木与交通学院,广州510641, [3]奥尔堡大学健康科学与工程系,奥尔堡9220
  • 相关基金:国家自然科学基金(61074147,60374062);广东省自然科学基金(S2011010005059,8351009001000002);广东省教育部产学研结合项目(201180g0400460)
  • 相关项目:关联物流运输优化调度的理论与方法研究
中文摘要:

针对量子进化算法计算量大、收敛速度慢以及容易出现早熟等问题,提出混合混沌量子进化算法.该算法采用混沌初始化方法产生初始种群,使种群具有较好的多样性;采用简单量子旋转门更新当前种群中的非最优个体,降低算法的计算量;提出混合混沌搜索策略以提高算法的收敛速度和全局搜索能力.大量的测试表明,与量子进化算法、实数编码量子进化算法和混合量子遗传算法相比,所提出的算法具有较快的收敛速度和较好的寻优能力.大量的测试也表明,若将混沌引入量子进化算法,则混合混沌搜索策略的综合性能明显优于载波混沌策略,在大多数情况下优于混沌变异策略.本文提出的算法是惟一的每次测试都收敛的算法,且实现简单,便于工程应用.将其用于求解城市道路的交通信号配时优化问题,实际效果令人满意.

英文摘要:

In order to reduce amount of computation, speed up convergence and restrain premature phe- nomena of quantum evolutionary algorithm, a hybrid chaotic quantum evolutionary algorithm is presented. The algorithm uses the chaotic initialization method to generate initial population that have better diver- sity, the simple quantum rotation gate to update non-optimal individuals of population to reduce amount of computation, and the hybrid chaotic search strategy to speed up its convergence and enhance its global search ability. A large number of tests show that the proposed algorithm has higher convergence speed and better optimizing ability than quantum evolutionary algorithm, real-coded quantum evolutionary al- gorithm and hybrid quantum genetic algorithm. Tests also show that when chaos is introduced to quantum evolutionary algorithm, the hybrid chaotic search strategy is superior to the carrier chaotic strategy, and has better comprehensive performance than the chaotic mutation strategy in most of cases. The proposed algorithm is the only one all of whose tests are convergent, and is easily implemented and applied in practice. It is satisfied in solving traffic signal timing optimization problem of urban road.

同期刊论文项目
期刊论文 47 会议论文 1 获奖 4
期刊论文 21 会议论文 6 获奖 1
同项目期刊论文