运用模匹配方法和求解单电子薛定谔方程,来演示非对称T型磁量子结构的电子输运性质.结果表明,结构因子和磁势垒都能改变电子散射模数,电子输运谱因此变得复杂而丰富,散射区域出现了完全局域态和磁边缘态.在特定的结构参数和磁场强度下,能观测到宽谷、尖峰、共振透射和共振反射等电子输运现象,即可以通过调节磁场大小和结构参数来实现波矢过滤.
We investigate transport properties of electrons through an asymmetric T-shaped magnetic quantum structure by the modemathcing technique and solution of the single electron Schrodinger equation. The results show that the changes of structural factors and magnetic field affect the electron scattering behavior and result in various patterns of electron transmission. When different magnetic configurations and structural factors are used, the transmission exhibits various patterns such as wide valley, sharp peak, resonant reflection, resonant transmission, and so on. Our results show that one may control the transmission property to design interferential quantum devices by adjusting magnetic configurations and or structural parameters.