针对LFM噪声雷达波形旁瓣功率水平高的问题,该文将低旁瓣波形设计方法和LFM噪声雷达波形设计方法相结合,提出一种新的低旁瓣LFM噪声雷达波形设计方法。该方法首先建立低旁瓣LFM噪声雷达波形设计目标函数,将确定性二次相位和随机相位的组合关系转化为优化问题的约束条件,然后通过该文提出的修正循环算法(MCAN)迭代求解,使得设计的恒模LFM噪声波形同时具有低旁瓣和高多普勒容忍性。最后,仿真结果表明该算法能够降低波形模糊函数的距离-多普勒2维旁瓣,对静止目标和运动目标均能够起到较好的效果,且保证了波形的低截获概率性能。
In order to solve the issue of high range sidelobe level of LFM noise radar waveform, a new design method of low sidelobe level LFM noise radar waveform is presented, which is a combination of low sidelobes level waveform design method and LFM noise radar waveform design method. Firstly, the objective function of the low sidelobes level optimization problem is established, and the relation between the quadratic phase factor and random phase factor is used as constraint functions. Then, to solve the optimization problem with constraint functions, Modified Cycle Algorithm New(MCAN) is proposed, which can be solved by iterative algorithm. Finally, simulation results show that this algorithm can effectively suppress range-Doppler sidelobe level, and keep excellent performance in stationary targets and movement targets scenario, it also possesses low probability of intercept.