在特征为零的域F上,一个无心Block型李代数 由基{La,i|a∈Z,-1≤i∈Z}及李括号[La,i,Lb,j]=(b(i+1)-a(j+1))La+b,i+j所确定.通过伴随对角作用构造了一个 -模V,证明了系数在模V上的Block型李代数的一阶上同调群是平凡的.
For a field F of characteristic zero, a centerless Block type Lie algebra is defined on the basis of {La,i|a∈Z,-1≤i∈Z}and relations[La,i,Lb,j]=(b(i+1)-a(j+1))La+b,i+j.We construct an -module V by the adjoint diagonal action of on V . It proves that the first cohomology group of Block Lie algehra with coefficients in -module V is trivial.