通过二维流体力学的扰动方程组的数值模拟,探讨了分离比ψ=-0.2时,长高比Γ=30的矩形腔体中混合流体Rayleigh-Benard对流发生点附近扰动的成长和斑图的形成。结果表明:温度场线性成长阶段扰动的成长率γ_m是相对瑞利数r的函数,成长率γ_m随着相对瑞利数r的变化关系式为γ_m=0.9351r^5.2039;在对流发生点附近的瞬态斑图取决于相对瑞利数r。给出了不同的相对瑞利数r(r分别为1.5、1.7、1.8)的情况下从小振幅到大振幅稳定状态的过渡过程中的两种不同的对流斑图,并讨论了其动力学特性。研究发现,当r较大时,存在行波与定常波共存的现象。