位置:成果数据库 > 期刊 > 期刊详情页
利用多层视觉网络模型进行图像局部特征表征的方法
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京师范大学珠海分校信息技术学院, [2]复旦大学计算机科学技术学院
  • 相关基金:国家自然科学基金(61272364,61375122)
中文摘要:

为了寻求代价更小、效率更高、适应性更强的图像局部特征表征方法,提出一种基于视觉机制的多层网络计算模型.首先对初级视皮层中的简单细胞和复杂细胞等神经元进行建模;然后对腹侧视通路上的V4区神经元和下颞叶皮层区神经元的响应模式进行研究,并利用该计算模型对输入图像进行局部特征的表征.实验结果表明,与传统的图像特征描述方法相比,该模型所提取的图像局部特征具有足够的区分度;此外,利用生物视觉模型提取出的图像局部特征在具有复杂背景的场景中显示出了更加优秀的泛化能力.

英文摘要:

For representing local image features, minor price, more efficient and more flexible, a hierarchical network model based on human vision physiological mechanism was put forward. Firstly, simple cell and com-plex cell in primary visual cortex are modeled, then studied the response pattern of V4 area and inferior temporal cortex on ventral side channel and representing the local features of input image utilized the computational model. The experiment results show that local image features extracted by computational model have sufficient dis-crimination; furthermore, the local image features extracted using biological visual model demonstrated much more excellent generalization ability in natural scene with complicated background.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752